Radiomic analysis of multi-contrast brain MRI for the prediction of survival in patients with glioblastoma multiforme

Radiomic analysis of multi-contrast brain MRI for the prediction of survival in patients with glioblastoma multiforme

Chaddad, Ahmad and Desrosiers, Christian and Toews, Matthew

Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2016

Abstract : Image texture features are effective at characterizing the microstructure of cancerous tissues. This paper proposes predicting the survival times of glioblastoma multiforme (GBM) patients using texture features extracted in multi-contrast brain MRI images. Texture features are derived locally from contrast enhancement, necrosis and edema regions in T1-weighted post-contrast and fluid-attenuated inversion-recovery (FLAIR) MRIs, based on the gray-level co-occurrence matrix representation. A statistical analysis based on the Kaplan-Meier method and log-rank test is used to identify the texture features related with the overall survival of GBM patients. Results are presented on a dataset of 39 GBM patients. For FLAIR images, four features (Energy, Correlation, Variance and Inverse of Variance) from contrast enhancement regions and a feature (Homogeneity) from edema regions were shown to be associated with survival times (p-value \textless 0.01). Likewise, in T1-weighted images, three features (Energy, Correlation, and Variance) from contrast enhancement regions were found to be useful for predicting the overall survival of GBM patients. These preliminary results show the advantages of texture analysis in predicting the prognosis of GBM patients from multi-contrast brain MRI.